SYLLABUS

OF

M. TECH
(Structural Engineering)

II YEAR

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLYBI AND EVALUATION SCHEME

M.Tech. (Structural Engineering)

(w.e.f. 2020-21)

Semester – III

				I	Period	S	Credits	F	Evaluat	ion Sche	eme	
S. No.			Name of Subject	L	Т	P	C		ontinuo ssessmo (CA)		Exam ESE	Subject Total
								UE	TA	Total		
1	DE		Elective –II	3	1	-	4	40	20	60	40	100
2	DE		Elective –III	3	1	-	4	40	20	60	40	100
3	DE		Elective –IV	3	1	-	4	40	20	60	40	100
4	DC	CE616	Directed Study	-	-	-	4	-	-	-	100	100
5	DC	CE699	M.Tech Dissertation	-	-	-	4	-	ı	60	40	100
	Total											500

Semester – IV

				I	Period	S	Credits	I	Evaluat	ion Sch	eme	
S. No.	Course Code Category No		Name of Subject		Т	P	C	_	ontinuo ssessmo (CA)		EXAM ESE	Subject Total
								UE	TA	Total		
1	DC	CE699	M.Tech Dissertation	ı	ı	I	4	ı	ı	60	40	100
2	DC	CE699	M.Tech Dissertation	-	-	ı	4	-	-	60	40	100
3	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
4	DC	CE699 M.Tech Dissertation		ı	ı	ı	4	i	1	60	40	100
			Total				16					400

TA- Teacher Assessment; ESE – End Semester Examination; CT- Cumulative Test.

Note: Duration of ESE shall be 03 (Three) hours per subject

M. Tech (Structural Engineering)

List of the Elective Paper:

Elective – I

CE504	Concrete Technology
CE505	Design of foundation structures

CE506 Design of steel Concrete composite Structures

CE513 Theory of Plates and Shell

Elective – II

CE601	Design of Bridges
CE602	Stability of Structures

CE602 Stability of Structures
CE603 Maintenance and Rehabilitation of Structures

Elective – III

CE607	Industrial Structures
CE608	Prefabricated Structures

CE612 Computer Aided Design in Structural Engineering

Elective – IV

CE606	Design of Tall Buildings
CE611	A Seismic Design of Structures

CE613 Prestressed Concrete

TA- Teacher Assessment; ESE – End Semester Examination; CT- Cumulative Test.

Note: Duration of ESE shall be 03 (Three) hours per subject.

Effective from Session: 2015-16											
Course Code	CE601	Title of the Course	Design of Bridges	L	Т	P	C				
Year	П	Semester	III		1	0	4				
Pre-Requisite	NIL	Co-requisite	NIL								
Course Objectives	_	•	nowledge of basic of hydraulics as well as structural design consideration of short span bridge. a of RCC and steel bridges.								
	 Impart 	knowledge of relevant b	Impart knowledge of relevant bridge foundation and its design.								

	Course Outcomes					
CO1	Lerner is made aware about selection criteria of type of bridge and various geometric & hydraulics design considerations as					
well as IRC loadings.						
CO2	Lerner will be able to design reinforced and prestressed concrete bridges.					
CO3	Lerner will be able to design steel bridges.					
CO4	Learner will be made aware with seismic consideration in bridge design use of bearing in bridge design.					
CO5	Learner will be able to design bridge foundation.					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Bridges	Introduction and selection of type of bridges, Geometric and Hydraulic design considerations, Catchment characteristics, Analysis of Runoff Response, runoff concentration, concentration time, economical span, Afflux, Loading and standards for highway and railway bridges, IRC class A, class B, class AA and 70R loadings.	08	CO1
2	Reinforced and Pre-stressed Concrete Girders	Introduction of Reinforced and Pre-stressed Concrete Bridges: types and standard forms, Balanced cantilever Bridge, Arch bridges, types of arch bridges, Balance cantilever bridges design, Bowstring girder bridges.	08	CO2
3	Steel Bridges	Steel bridges, Plate Girder Bridge, Web flanges, intermediate stiffeners, Vertical stiffeners, end bearing stiffeners, Box girder bridge, elements and design, Cable Stayed Bridge, Cantilever bridge.	08	CO3
4	Design of Pier & Abutment	Design of pier and abutments; Force on bearings, types of bearing and design, Seismic design considerations.	08	CO4
5	Bridge Foundations	Design and Analysis of deep foundation, pile foundation, group of piles efficiency and well foundation.	08	CO5

Reference Books:

C.Vilmaz, S.Wasti Cetin Vlmaz, Analysis and Design of Bridges, CBC Press, (2014).

Raju Krishna, Design of Bridges, Oxford & Ibh Publishing Co. Pvt Ltd (2012).

D. Jhonson Victor, Design of Bridges, Oxford & IBH, (2012).

M.A Jayram, Design of Bridge Structures, PHI,(2012).

e-Learning Source:

https://nptel.ac.in/courses/105105165/

 $https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105165/lec10.pdf$

https://lecturenotes.in/m/19545-note-of-bridge-engineering?reading=true

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO	101	102	103	104	103	100	107	100	10)	1010	1011	1012	1501	1502
CO1	3	1	2	1	0	1	0	0	0	0	1	1	0	0
CO2	2	1	3	1	1	1	1	0	0	1	1	1	0	0
CO3	2	1	3	1	1	1	1	0	0	1	1	1	0	0
CO4	3	1	2	1	1	1	1	1	0	0	0	1	0	0
CO5	2	1	3	0	1	1	1	0	0	0	0	1		

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Sess	sion: 2016-17						
Course Code	CE602	Title of the Course	Stability of Structure	L	T	P	C
Year	II	Semester	III	3	1	0	4
Pre-Requisite	CE501, CE513	Co-requisite	NIL				
Course Objectives	To understandTo understandTo understand approach.	the effect of shear and stal the torsion instability and the buckling of plates a	olumns, beams and frames. bility analysis of frame for various boundary c buckling behavior of thin-walled bars of open nd shells, various edge conditions to analyz of columns, plates and shells under axial and	cross e the	section m by	equili	brium

	Course Outcomes								
CO1	Learner will be able to understand the buckling behavior of structural members.								
CO2	Learner will understand the effect of shear and stability analysis of frame for various boundary conditions.								
CO3	Learner will understand the buckling behavior of thin-walled bars of open cross section with given problems.								
CO4	Learner will be able to analyze the plates and shells by equilibrium approach.								
CO5	Learner will be able to understand the post buckling behavior of columns, plates and shells under axial and biaxial loading.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Buckling of Column, Beams and Frames	Buckling of columns, States of equilibrium Classification of buckling problems, concept of equilibrium, Governing equation for columns, Imperfection and vibration approaches to stability analysis - Analysis for various boundary conditions, Effect of shear on buckling. Beam-column, frames.	08	CO1
2	Torsional Instability	Torsion Buckling: Pure torsion of thin-walled bars of open cross section, non-uniform torsion of thin-walled bars of open cross section. Combined Torsional and flexural instability.	08	CO2
3	Buckling of Plate	Local buckling of plate elements, Governing differential equation, Buckling of thin plates, various edge conditions. Analysis by equilibrium approach.	08	CO3
4	Buckling of Shells	Local buckling of shell elements, Analysis by equilibrium approach, Flexural buckling of shells.	08	CO4
5	Post Buckling Behavior of Structural Element	Post buckling behavior of columns, plates and shells under axial and biaxial loading, Derivation for the buckling loads and for the in-plane stiffness of the plate and shell panels immediately after the instant of buckling.	80	CO5

Reference Books:

Stephen P.Timoshenko, James M Gere, "Theory of Elastic Stability"-2nd Edition, McGraw - Hill, New Delhi. (2009).

Iyenger, N.G.R. "Structural Stability of columns and plates" Affiliated East west press Pvt Ltd., (1990).

Gambhir M.L. "Stability, Analysis & Design of Structure" Springer Science & Business Media, (2004).

Alexandar Chajes, "Principles of Structural Stability Theory" Prentice Hall Publications (1974).

e-Learning Source:

https://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect23.d/IAST.Lect23.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	POZ	PO3	PO4	PU5	POO	PO/	PU	PO9	POIU	POH	PO12	P501	PSU2
CO1	3	2	1	2	0	1	0	0	0	0	0	2	1	1
CO2	3	2	1	2	0	1	0	0	0	0	0	2	1	2
CO3	2	2	0	2	0	0	0	0	0	0	0	2	1	2
CO4	2	3	0	1	0	0	0	0	0	0	0	2	1	2
CO5	2	3	1	2	0	0	0	0	0	0	0	2	1	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17										
Course Code	CE603	Title of the Course	Maintenance and Rehabilitation of Structures	L	T	P	C			
Year	II	Semester	Ш	3	1	0	4			
Pre-Requisite	NIL	Co-requisite	NIL							
Course Objectives	To impar for evalu	t students, sound kno	and rehabilitation of structures. wledge on various causes of failures, detailed assureture, materials available for effecting repair							

	Course Outcomes								
CO1	Capability to understand the defect of concrete due to climate and suggest remedies.								
CO2	Capability to eliminate construction error and solutions to corrosion problems in steel bars.								
CO3	Skill to perform quality control on concrete.								
CO4	Efficient in repairing the cracks using various techniques.								
CO5	Capability to repair masonry cracks and corrosion of steel								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Properties of Concrete and Weathering Effect on Concrete	Quality assurance for concrete construction, In built concrete properties, strength, permeability, volume changes, thermal properties, cracking. Effects due to climate, temperature, chemicals wear and erosion.	08	CO1
2	Corrosion Effects and its Prevention	Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods of corrosion protection, inhibitors, resistant steels, coatings, and catholic protection.	08	CO2
3	Structural Audit and Maintenance	Inspection, Structural Appraisal, Economic appraisal, components of quality assurance, conceptual bases for quality assurance schemes. Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, expansive cement, polymer concrete, sculpture infiltrated concrete, fibrocement, fiber reinforced concrete.	08	CO3
4	Materials and Techniques for Repair	Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gummite and concrete epoxy injection, mortar repair for cracks, shoring and underpinning.	08	CO4
5	Repair, Retrofitting and Rehabilitation	Repair of - stone, brick and block masonry (Cracks, dampness, efflorescence, joint separation; - Flooring - Roofs (sloping, flat, pitched, etc.) - Concrete members due to Steel Corrosion, shear, tension, torsion, compression failure. Rainwater Leakage in Buildings - Leakage in Basement. Control on Termites (White Ants) in Buildings; Fungus Decay of wood works in Buildings	08	CO5

Reference Books:

Dayaratnam.P and Rao.R, "Maintenance and Durability of Concrete Structures", University Press, India, (2007).

Shetty M.S., "Concrete Technology - Theory and Practice", S. Chand & Company Limited, (2008).

Panchdhari A.C., "Maintenance of Building" New Age International (P) Limited, Publishers; First edition (2006).

Venkataraman K., "Maintenance Engineering & Management" Prentice Hall India Learning Private Limited (2007).

e-Learning Source:

https://www.sasurieengg.com/e-course-material/CIVIL/IVYear%20Sem%208/CE2071%20RRS.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO	POI	POZ	FU3	PO3	PO4	PU5	roo	107	100	PO9	POIU	ron	FO12	1301	1302
CO1	3	0	0	3	0	0	0	0	0	3	0	3	1	3	
CO2	3	0	0	3	0	0	0	0	0	3	0	3	2	2	
CO3	3	0	0	3	0	0	0	0	0	3	0	3	1	3	
CO4	3	0	0	3	0	0	0	0	0	3	0	3	2	3	
CO5	2	0	0	2	0	0	0	0	0	2	0	2	1	2	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sess	Effective from Session: 2016-17										
Course Code	CE606	Title of the Course	Design of Tall Buildings	L	T	P	C				
Year	II	Semester	III	3	1	0	4				
Pre-Requisite	NIL	Co-requisite	NIL								
Course Objectives	Able to analyAble to analyTo understand	·	tures under wind loads. ctures under seismic loads. ear wall of tall buildings.								

	Course Outcomes							
CO1	Learner will develop understanding of tall structures and analysis it for stability.							
CO2	Learner will be able to determine the response of tall building under wind loading.							
CO3	Learner will be able to determine the response of tall building under earthquake loading.							
CO4	Learner will develop understanding of codal provision for shear wall.							
CO5	Learner will be made aware of codal provision for dynamic load and design tall structures.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Stability of Tall Structures	Types of structural systems; types of loads; method of analysis; stability of tall structures; selection of foundation for tall buildings.	08	CO1
2	Effect of Wind on Tall Buildings	Bluff body aerodynamics; aero-elastic phenomena; wind directionality effects; structural response and design considerations; standard provisions for wind loading.	08	CO2
3	Effect of Earthquakes on Tall Buildings	Introduction to earthquake engineering and earthquake resistant design of buildings; earthquake motion and response; general principles and design criteria for buildings.	08	CO3
4	Provision of Shear Wall	Shear in buildings; need and location of shear walls in tall buildings; analysis and design of shear walls.	08	CO4
5	Codal Provisions	Codal provisions, a seismic design of structures; dynamic analysis; effect of torsion; design of stack like structures; earthquake forces in tall buildings.	08	CO5

Reference Books:

Agarwal, Pankaj; & Shrikhande, Manish; Earthquake Resistant Design of Structures .PHI Publication.2012.

S.Taranath Boca Raton Structural Analysis and Design of tall building CRC Press 2012.

SP 64 (2001): Explanatory Handbook on Indian Standard Code of Practice for Design Loads (Other than Earthquake) for. Buildings and Structures BIS New Delhi.

IS 1893 (Part 1): Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings (Fifth Revision).

Duggal.S.K Earthquake Resistance Design of structure Oxford university Publication.2014.

Ashok K. Jain Reinforced concrete limit state design, Nemchand and Bros. Publication, 2012.

e-Learning Source:

https://www.iitk.ac.in/nicee/IITK-GSDMA/EQ21.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	10)	1010	1011	1012	1501	1502
CO1	3	0	0	3	0	0	0	0	0	3	0	3	1	3
CO2	3	0	0	3	0	0	0	0	0	3	0	3	2	2
CO3	3	0	0	3	0	0	0	0	0	3	0	3	1	3
CO4	3	0	0	3	0	0	0	0	0	3	0	3	2	3
CO5	2	0	0	2	0	0	0	0	0	2	0	2	1	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD
Traine & Bigh of Frogram Coordinator	Sign & Star of Hob

Effective from Sess	Effective from Session: 2016-17											
Course Code	CE607	Title of the Course	Industrial Structures	L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	CE512	Co-requisite	NIL									
Course Objectives	To impart desTo introduce lTo impart des	ign theories of bunkers a earner with classificatio	acepts of industrial building. and silos. n and design concepts of concrete pipes and steel chir truss and machine foundation.	nneys	S.							

	Course Outcomes
CO1	Learner should be able to understand the behavior of industrial building, and also be able to analysis & design industrial structures
	by knowing its requirements.
CO2	Learner should able to know the design concepts of bunker and able to design bunkers and silos for given requirements by following guide lines of codes.
CO3	By knowing the requirements of pipes and chimney learner should able to design aforesaid structures given requirements.
CO4	Learner should be able to design large span truss by knowing its requirements and geographical conditions and also able to design
CO4	machine foundation for given conditions.
CO5	Learner should be able to analyze and design pipes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Industrial Buildings	Types of industrial building, Planning of industrial building. Analysis and design of portal frame and gantry girder for industry.	08	CO1
2	Bunkers & Silos	Introduction to Bunkers, Types of Bunkers. Design of Concrete Bunkers. Introduction to Silos, Types of Silos, Jenssen's theory, Arry's theory, Design of Concrete Silos by Jensson theory.	08	CO2
3	Towers & Chimneys	Dimension of Chimney (Stacks), Analysis of stresses in chimney, Design of Steel Chimney. Design of Steel tower.	08	CO3
4	Large Span Roofs & Machine Foundation	Introduction Large span roof structures, design of Roof Trusses, Structural aspect of machine foundation.	08	CO4
5	Pipes	Classification of Pipe, Design principle, Reinforcement in pipe, Test on pipe, Design of concrete pressure pipes.	08	CO5

Reference Books:

Duggal S. K., "Limit State Design of Steel Structures", Tata Mc-Graw-Hill Publishing Company. 2nd edition (2016).

Punmia, B.C. Jain A.K, "Steel Structures Design and Practice", Laxmi Publications (P) Ltd.2nd edition (reprint 2011).

N. Krishna Raju, "Structural Design and Drawing Reinforced Concrete and Steel", University Press 2nd edition (2012).

N Krishna Raju "Advance Reinforced Concrete Design", CBS publication and Distributors Pvt. Ltd 2nd edition(reprint 2014).

Vazirani, Ratwani & Kumar "Design and Analysis of Steel Structure", Khanna Publishers, New Delhi 18th revised edition (2012)

e-Learning Source:

https://nptel.ac.in/courses/105106113/3

				Course	e Articu	lation M	latrix: (]	Mapping	g of COs	with PO	s and PSC	Os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	F 02	103	104	103	100	107	100	109	1010	1011	FO12	1301	1302
CO1	3	3	0	3	0	0	0	0	0	0	0	2	1	2
CO2	3	3	0	3	0	0	0	0	0	0	0	2	2	2
CO3	3	3	0	3	0	0	0	0	0	0	0	2	1	3
CO4	3	3	0	3	0	0	0	0	0	0	0	2	1	2
CO5	2	1	0	2	0	0	0	0	0	0	0	2	1	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2016-17												
Course Code	CE608	Title of the Course	Prefabricated Structures	L	T	P	С						
Year	II	Semester	III	3	1	0	4						
Pre-Requisite	NIL	Co-requisite	NIL										
Course Objectives	To kno memberTo desTo desTo lea	ow about design considers. ign the Pre-stressed condign for shear, torsion, be	s prefabrication systems and structural schemes. eration, Economy of prefabrication and prefabrication crete sections. Indication and bearing and application of prestressing of roof ransportation and erection of Form-work and dimen	mem	bers.								

	Course Outcomes
CO1	One will get knowledge about various prefabrication systems and structural schemes.
CO2	Learner will learn about design consideration, Economy of prefabrication and prefabrication of load bearing members.
CO3	Learner will be able to design the Pre-stressed concrete section.
CO4	Learner will learn about application of prestressing of roof members and able to design for shear, torsion, bend and bearing.
CO5	Learner will learn about production, Transportation and erection of Formwork and dimension tolerances of shuttering and mould design.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Prefabrication	Need of prefabricated structural, Its aim, advantages & disadvantages, types of prefabrication, Material used of Prefabrication.	08	CO1
2	Modular Co- ordination in Prefabricated Structures	Modular co-ordination, components, prefabrication systems and structural schemes, Design considerations, Economy of prefabrication: prefabrication of load bearing members.	08	CO2
3	Design of Prestressed Concrete Sections	Disuniting of structures; Design of cross section of load carrying members; structural behavior of precast structures, Handling and erection stresses, Design of section for flexure, Axial tension, Compression.	08	CO3
4	Design for Shear, Torsion, Bend and Bearing	Application of prestressing of roof members; floor systems, Two-way load bearing walls, wall panels, hipped plate and shell structures, Dimensioning and detailing of joints for different structural connections; constriction and expansion joints.	08	CO4
5	Fabrication and Erection of Formwork	Production, Transportation and Erection; Organization of production, Storing and erection equipments, Shuttering and Mould design-Dimensional tolerances, Erection of RCC structures, Total prefabricated buildings.	08	CO5

Reference Books:

Jain A.K., "Reinforced concrete design, limit state Method", Nem Chand & Bros.; Seventh edition (2012)

Punmia B.C and Jain A.K, "Reinforced concrete structures(Vol.2)", Laxmi Publications, Fifth Edition (2003)

Praveen Nagarjan, "Prestessed concrete design" Pearson Education New Delni(2013)

Garold (Gary) Oberlender and Robert Peurifoy "Formwork for Concrete Structures" McGraw Hill Professional,(2010)

IS 456-2000 Indian Standard "Plain & Reinforced Concrete-code of practice", BIS, New Delhi

IS 159166-2010 Building Design and Erection using Prefabricated Concrete -code of practice", BIS, New Delhi

e-Learning Source:

https://civil digital.com/prefabricated-structures-prefabrication-concept-components-advantages-ppt/

https://www.srividyaengg.ac.in/coursematerial/Civil/103823.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	109	1010	1011	F O 1 2	1301	1302
CO1	3	2	1	1	1	0	0	0	0	0	0	2	0	0
CO2	3	2	2	1	1	0	0	0	0	0	0	2	0	0
CO3	2	2	3	1	1	0	0	0	0	0	0	2	0	0
CO4	3	2	3	2	1	0	0	0	0	0	0	2	0	0
CO5	3	3	2	1	2	0	0	0	0	0	0	2	0	0

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2016-17												
Course Code	CE611	Title of the Course	itle of the Course A Seismic Design of Structures			P	C					
Year	II	Semester	III		1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	To impart desTo introduce l		· E	chimne	eys.							

	Course Outcomes
CO1	Learner should be able to understand the behavior of industrial building, and also be able to analysis & design industrial structures
	by knowing its requirements.
CO2	Learner should able to know the design concepts of bunker and able to design bunkers and silos for given requirements by
002	following guide lines of codes.
CO3	By knowing the requirements of pipes and chimney learner should able to design aforesaid structures given requirements.
CO4	Learner should be able to design large span truss by knowing its requirements and geographical conditions and also able to design
CO4	machine foundation for given conditions.
CO5	Learner will be able to understand Indian Standard guidelines and implement it in seismic design.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Characteristic of Earthquakes	Earthquake terminology, magnitude, intensity, measurement of ground motion, frequency-magnitude relationship. Strong ground motion: Acceleration time histories, peak parameters (peak ground acceleration / velocity / displacement). Earthquake induced Liquefaction of soil.	08	CO1
2	Structural Idealization for Dynamic Analysis	Earthquake analysis of structures: Idealization of structures, Free vibration of lumped Multiple Degree of freedom system, response spectrum analysis, equivalent force concepts, torsionally coupled systems.	08	CO2
3	Concepts of Earthquake Resistant Design	Ductility requirement reduction factor, over-strength, response reduction factor, design response spectrum, lateral stiffness, building configuration, base isolation	08	CO3
4	Design of Shear Wall	Design of shear wall. Modern techniques in a seismic design.	08	CO4
5	IS Codes for Seismic Design of Structures	Building codes: Performance of buildings in past earthquakes, historical perspective of code development, Indian code (IS: 1893), Retrofitting and strengthening of structures (IS: 13935). Detailing for reinforced concrete and masonry buildings, provisions of IS: 13920, IS: 4326, IS: 13927, IS: 13928	08	CO5

Reference Books:

R.W. Clough and J. Penzein, Dynamics of structures, second edition, McGraw Hill. International edition

M. Paz, Dynamics of structures, fifth edition, CBS pub.

A.K. Chopra, Dynamics of structures- Theory and application to earthquake engineering, fifth edition PHI.

T. Pauley and M.S.N. Priestly, Seismic design of reinforced concrete and masonry buildings. John Wiley and sons

S.R.Damodarasamy and S.Kavitha , Basics of Structural Dynamics and A Seismic Design, PHI

e-Learning Source:

https://www.iitk.ac.in/nicee/wcee/article/11_2001.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	10)	1010	1011	1012	1501	1502
CO1	3	3	0	3	0	0	0	0	0	0	0	2	1	2
CO2	3	3	0	3	0	0	0	0	0	0	0	2	2	2
CO3	3	3	0	3	0	0	0	0	0	0	0	2	1	3
CO4	3	3	0	3	0	0	0	0	0	0	0	2	1	2
CO5	2	1	0	2	0	0	0	0	0	0	0	2	1	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Sess	Effective from Session: 2016-17												
Course Code	CE612	Title of the Course Computer Aided Design in Structural Engineering					С						
Year	II	Semester	III	3	1	0	4						
Pre-Requisite	NIL Co-requisite NIL												
Course Objectives	To developTo utilize tTo utilize t	the skill in order to work on the programming in order to j	ing skill in order to carry our engineering problems. EXCEL efficiently in order to carry our engineering perform analysis and design in structural engineering analysis and design in structural engineering. engineering.	ig pro	blem	ıs.							

	Course Outcomes									
CO1	Capability to execute the programming in python language.									
CO2	Skill to work on EXCEL and capability to perform statistical analysis on a data efficiently.									
CO3	Efficient in structural analysis problems using python language.									
CO4	Efficient in mix proportioning and structural designing using excel.									
CO5	Capability to perform automation using machine learning techniques in structural engineering.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Computing Environment and Python Programming	Introduction to computer aided design- An over view- computer as a design medium hardware - components of a computer programming languages and analysis software. Python Programming language- Introduction- Control structures-If statement - Switch statement-loops-nested loops-while and for, Do-While-continue statement-Go to statement-Examples. Python Programming Language- Arrays - One dimensional Arrays- Two Dimensional Arrays and arrays- Matrix manipulations using arrays- data files- basic operations-reading and writing and file accessing files-examples.	08	CO1
2	Excel Application in Engineering	Tables and charts - basic elements of Excel - Conditional formatting - Logic and nested functions - Organizing data - Advanced table formatting - Worksheets management - Mathematical functions - Database functions - Working with references on different worksheets - Analyzing data - Define and use cells names - Other What-if analysis tools - Text functions - Lookup and reference functions - Data validation - Auditing tools - Data gathering and automations - Importing and linking data - Advanced copy and paste options.	08	CO2
3	Application in Structural Engineering-I	Uses of Software packages in the area of Structural Engineering. Program using arrays and functions for matrix manipulation using programming. Application of Finite Element method for solving Structural Engineering problems. Program for the analysis of simply supported beam- continuous beam- multi-storeyed space frame.	08	CO3
4	Application in Structural Engineering-II	Design of slabs- beam- column and footing as per Indian Standard code using Excel. Concrete mix proportioning and plotting distribution curve on Excel. Estimation of a building on Excel.	08	CO4
5	Machine Learning in Structural Engineering	Introduction to machine learning, Types of machine learning, Uncertainty in structural designing and mix proportioning- Dealing uncertainty in structural engineering with machine learning. Automation in structural engineering.	08	CO5

Reference Books:

David.F. Rogers. Mathematical elements for computer graphics, McGraw Hill 2005.

David F. Rogers. Elements of computer graphics, Mc Graw Hill International 2002.

Martin C. Brown, Python: The Complete Reference, Mc Graw Hill International 2018.

Mark Taylor, Learn Microsoft Excel at Advanced Level, Paragon Pub., 2009.

Brian R. Hunt, A Guide to MATLAB: For Beginners and Experienced Users, Cambridge University Press, 2006.

e-Learning Source:

https://nptel.ac.in/courses/117106113/34

https://nptel.ac.in/courses/106105166/26

				Course	e Articu	lation M	latrix: (]	Mapping	g of COs	with PO	s and PSC	Os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	0	3	3	1	3	0	0	0	0	0	0	3	3	3
CO2	0	3	3	0	3	0	0	0	0	0	0	3	3	3
CO3	0	3	3	3	3	0	0	0	0	0	0	3	3	3
CO4	0	3	3	3	3	0	0	0	0	0	0	3	3	3
CO5	0	3	3	3	3	0	0	0	0	0	0	3	3	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD
rume a sign of Frogram Coorumator	Sign & Star of 1102

Effective from Session: 2020-21												
Course Code	CE613	Title of the Course	Prestressed Concrete	L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	Nil	Co-requisite	Nil									
Course Objectives	To impart iTo impart tTo impart c	mportance's of control doehavior and design concented to shear, bond an	in concrete and their types. eflection. ept of pre-stressed concrete flexure members. d bearing stress in prestress concrete member. full and partial prestressed members									

	Course Outcomes
CO1	Learner should know the concepts of pre-stressing in concrete structures as well an able to formulate losses in prestressed
	concrete.
CO2	Learner should know the factors influencing deflection in prestress structures and able to calculate deflection of prestressed
COZ	concrete member by using code provision for given conditions.
CO3	Learner will be able to understand behavior of prestressed flexure members and able to design flexure member by using code
COS	provision for given conditions.
004	Learner will be able to understand concepts of transmission length, bond, bearing and shear stress in prestressed members as well
CO4	as able to design of prestress member for bond, bearing and shear forgiven requirement.
COF	Learner will be able to understand the behavior and design concept of full and partial prestressed members and able to design
CO5	member for given requirements by following the guideline of Indian codes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Prestressed Concrete	Pre-stressed concrete, basic concept, prestressing material and prestressing systems; losses of prestress, End anchorage and cable layouts.	08	CO1
2	Deflection of Prestressed Concrete Member	Importance of control of deflection, Factor influencing deflection, Deflection of cracked and uncracked member	08	CO1
3	Design of Flexural Member	Flexure strength of prestressed concrete sections, Design of section for flexure, analysis and design of prestressed concrete flexure members, simply supported beams and slabs	08	CO1
4	Design for Shear, Torsion, Bend and Bearing	Shear and principle stress in prestress concrete member, design of shear reinforce ment, transmission length, design of prestress member for bond and bearing	08	CO1
5	Design of Tension and Compression Member	Analysis and design of prestressed compression and tension concrete members. Design of partial pre-stress pre tensioned poles, design of pre-stressed concrete piles.	08	CO1

Reference Books:

Jain A.K., "Reinforced concrete design, limit state Method", Nem Chand & Bros.; Seventh edition (2012)

N Krishna Raju. "Prestressed Concrete" McGraw Hill Education; Fifth Edition (2012)

Praveen Nagarjan, "Prestessed concrete design" Pearson Education New Delni(2013)

IS 456-2000 Indian Standard "Plain & Reinforced Concrete-code of practice", BIS, New Delhi

e-Learning Source:

https://www.nptel.ac.in/courses/105106117/

https://www.nptelvideos.in/2012/11/prestressed-concrete-structures.html

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	109	1010	1011	1012	1301	1302
CO1	2	2	0	0	0	0	0	0	0	0	0	0	1	3
CO2	2	2	0	0	0	0	0	2	0	0	0	1	1	3
CO3	2	2	2	0	0	0	0	2	0	1	0	1	1	3
CO4	2	2	2	0	0	0	0	2	0	1	0	1	1	3
CO5	2	2	2	0	0	0	0	2	0	1	0	1	1	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2016-17										
Course Code	CE616	Title of the Course	Directed Study	L	T	P	C			
Year	II	Semester	III	0	0	0	4			
Pre-Requisite	NIL Co-requisite NIL									
Course Objectives	• To ma	To make learner aware about the latest technology and engineering practices in industries.								

	Course Outcomes
CO	Awareness regarding the latest technology, engineering methodology and practices being used in industries.

Unit	Content of Unit	Contact	Mapped
No.		Hrs.	CO
1	Undergo industrial training in any respective industry in order to get familiar with the latest technology, engineering techniques and practices being used in the industry. Have to absorb some skill from the training identifying the area of improvement. The concepts/skills must be clearly understood and presented by the student. A hard copy of the report should be submitted to the Department after the completion of directed study.	03hrs	CO1 and CO2

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	POZ	PO3	PO4	PU5	PO0	ro/	rus	PO9	POIU	POII	PO12	1501	PSU2
CO1	0	0	0	3	3	3	0	0	3	3	0	3	3	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20										
Course Code	CE699	Title of the Course	M. Tech Dissertation	L	T	P	C			
Year	II	Semester	III and IV	0	0	0	20			
Pre-Requisite	NIL Co-requisite NIL									
Course Objectives	To enhance the writing skill for research paper and dissertation									

	Course Outcomes							
CO1	Capability to work independently on a research-based problem							
CO2	Skill to perform review of available literature effectively to present research gap.							
CO3	Aptitude to plan methodology for the attainment of various research objectives.							
CO4	Competency to apply of various engineering and technological tools to carry research.							
CO5	Ability to conclude work using critical thinking							
CO6	Proficiency in preparing presentation and report.							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	0	0	3	3	3	0	3	0	2
CO2	0	0	0	3	3	0	0	3	3	3	0	3	0	1
CO3	0	0	0	0	3	0	0	0	3	3	0	3	0	2
CO4	0	0	0	3	3	0	0	0	3	0	0	3	0	1
CO5	0	0	0	3	3	0	0	3	3	3	0	3	0	1
CO6	0	0	0	0	3	0	0	3	3	3	0	3	0	1

1- Low Correlatio0n; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD